هندسه جهاني پر از آشوب

a Truth Seeking

Active Member
شايد تا کنون بارها نام فراکتالها يا برخالها را شنيده باشيد؛ موجوداتي که به عنوان اصلي ترين بازيگران هندسه منتج از نظريه آشوب شناخته مي شوند.
اين هندسه ويژگي هاي منحصر به فردي دارد، که مي تواند توجيه گر بسياري از رويدادهاي جهان اطراف ما باشد، اما ويژگي اصلي که در تعريف آشوب و بالطبع هندسه آن وجود دارد، باعث مي شود ما استفاده ويژه اي از اين سيستم ببريم.
اين روزها از فراکتالها به عنوان يکي از ابزارهاي مهم در گرافيک رايانه اي نام مي برند، اما هنگام پيدايش اين مفهوم جديد بيشترين نقش را در فشرده سازي فايلهاي تصويري بازي کردند.
براي آن که درک بهتري نسبت به فراکتالها داشته باشيم ، بد نيست نگاه مختصري به آشوبي بيندازيم ، که فراکتال ها فضاي هندسي آنها را تعريف مي کند.

تعريف آشوب
فصل مشترک تعاريفي که براي مفهوم آشوب ارائه شده است ، تاکيد بر اين نکته است که آشوب دانش بررسي رفتار سيستم هايي است که اگرچه ورودي آنها قابل تعيين واندازه گيري است ، اما خروجي اين سيستم ها ظاهري کتره اي و تصادفي دارد.
شايد به همين دليل بود که استوارت رياضيدان برجسته اين موضوع را مفهومي احتمالاتي مي دانست ، اما چيزي نگذشت که وي تعريف خود را اصلاح کرد و به تعريفي رسيد که تقريبا مورد تاييد عمومي قرار دارد.
بر اساس اين تعريف ، آشوب به توانايي يک الگو و مدل ساده گفته مي شود که اگرچه خود اين الگو هيچ نشاني از پديده هاي تصادفي در خود ندارد، اما مي تواند منجر به ظهور رفتارهاي بسيار بي قاعده در محيط شود.
براي مثال ، يک دنباله رياضي از اعداد را در نظر بگيريد که براي توضيح يک پديده مشخص وضع شده است. بياييد هربار پاسخ معادله را به عنوان متغير جديد به اين سيستم وارد کنيد.
سري جوابي که به دست خواهد آمد، دنباله اي از اعداد است که رفتاري آشوبناک دارد و اگر آنها را تصوير کنيم به يک الگوي واقعي آشوب مي رسيم ؛ مثلا معادله ساده x3+c که در آن c يک عدد مختلط است ، اگر يک بار يک عدد به x نسبت دهيم و دفعات بعد به جاي عدددلخواه پاسخ قبلي معادله را به xنسبت دهيم ، نمونه بسيار جذابي از يک رابطه آشوبناک به دست مي آيد؛ رابطه اي که زيبايي هاي خود را آشکار خواهد کرد، اما نکته اي هم مشخص است.
همين طور که از مثال مشخص شده ، يکي از شناسه هاي مهم سيستم هاي آشوب در اين است که بازخورد يک رفتار بر ادامه فعاليت آن تاثير مي گذارد؛ يعني همواره اولين محصول خروجي در ادامه روند نقش بازي مي کند؛ همانند زاد و ولد موجودات ، اگر بخواهيم روند زاد و ولد انسان يا هر موجود ديگري را در نظر بگيريم ، بايد توجه کنيم که نسل اول کودکان اگرچه محصول اين سيستم هستند، اما در تعيين ادامه روند سيستم نقش بازي مي کنند.

فراکتالها
اگرچه آشوب نظريه اي است که بر موضوعات گوناگون اجتماعي و سياسي و اقتصادي نظر دارد، اما نيازمند زباني براي تصوير سازي مفاهيم خود بود و اين عرصه اي بود که هندسه آشوب يا فراکتالها خلق کردند.
ما در هندسه آشوب با تصاوير متفاوتي سرو کار داريم ، تصاويري که بزرگترين خصوصيات آنها اين است که وقتي رسم آن را آغاز مي کنيم ، نمي دانيم در نهايت با چه پديده اي روبه رو خواهيم شد و از سوي ديگر بازخورد در آن نقش اساسي دارد. بياييد يک فرمول کلي را اجرا کنيم. يک مثلث متساوي الاضلاع رسم کنيد.
حال ميانه 3ضلع را مشخص کرده و از رسم آنها به هم مثلث متساوي الساقين جديدي به دست آوريد. همين بلا را بر سر 3مثلث تشکيل شده بيروني بکنيد و اين روند را تا آنجا که مي توانيد ادامه دهيد. شما با استفاده از يک رابطه ساده - که تقسيم اضلاع مثلث به نصف و اتصال آنها به هم بود - و با تکرار آن موفق به رسم نقشه يک ساختار فراکتالي شده ايد.
چنان اشکالي اجزاي سازنده هندسه جدي فراکتالي هستند؛ هندسه اي که به قول يکي از خالقان آن ، يعني مندلبرات ابزاري را براي ديدن بي نهايت در اختيار ما قرار مي دهد.اين اشکال يک مشخصه بسيار عمده دارند. کل شکل از اجزايي مشابه شکل اول تشکيل شده است.
در مثال خودمان مثلث بزرگ از مجموعه اي مثلثهاي همسان به وجود آمده است. اين يکي از خصوصيات زيباي فراکتالهاست که همزمان از سوي طبيعت و فناوري به کار گرفته شده است.
اگر تا به حال به يک برگ سرخس نگاه کرده باشيد، مي توانيد متوجه تشابه اجزاي مختلف آن شويد. ساختار کل ساقه همانند يک برگ و ساختار يک برگ همانند يک جزو کوچک آن است.
اگر فرصت کرديد نگاهي هم به سواحل درياها يا تصاوير هوايي کوهستان ها و گياهان اطرافتان بيندازيد، بسرعت درخواهيد يافت که در جهاني آشوب زده احاطه شده ايد. اگر هنوز از اين موجودات ساده و در عين حال پيچيده هيجان زده نشده ايد، اين نکته را هم بشنويد.اين اجسام نه يک بعدي اند، نه دو بعدي و نه سه بعدي.
اين ها ابعادي کسري دارند؟ فراکتالها دقيقا به دليل همين خاصيت ويژه اي که دارند، زماني توانستند روشي براي ذخيره سازي تصاوير ارائه دهند. معمولا زماني که يک تصوير گرافيکي قرار است به شکل يک فايل تصويري ذخيره شود، بايد مشخصات هرنقطه از آن (شامل محل قرار گيري پيکسل و رنگ آن به صورت داده هايي عدي ذخيره شود و زماني که يک مرور گر بخواهد اين فايل را براي شما به تصوير بکشد و نمايش دهد، بايد بتواند اين کدهاي عدي را به ويژگيهاي گرافيکي تبديل کند و آن را به نمايش بگذارد. مشکلي که در اين کار وجود دارد، حجم بالايي از داده ها ست که بايد از سوي نرم افزار ضبط کننده و توليد کننده بررسي شود.
اگر بخواهيم تصوير نهايي ما کيفيتي عالي داشته باشد،نيازمند آنيم که اطلاعات هريک از نقاط تشکيل دهنده تصاوير را با دقت بالايي مشخص و ثبت کنيم و اين حجم بسيار بالايي از حافظه را به خود اختصاص مي دهد، به همين دليل ، روشهايي براي فشرده سازي تصوير ارائه مي شود.
اگر نگاهي به فايلهايي که با پسوندهاي مختلف ضبط شده اند، بيندازيد متوجه تفاوت فاحش حجم آنها مي شويد. برخي از اين فرمتها با پذيرفتن افت کيفيت بين تصوير توليدي و آنچه آنها ذخيره مي کنند، عملا اين امکان را در اختيار مردم قرار مي دهند، که بتوانند فايلها و تصاوير خود را روي فلاپي ها و با حجم کمتر ذخيره کنند يا روي اينترنت قرار دهند.
براي اين فشرده سازي از روشهاي مختفي استفاده مي شود. درواقع در اين فشرده سازي ها بر اساس برخي الگوريتم هاي کار آمد سعي مي شود به جاي ضبط تمام داده هاي يک پيکسل مشخصات اساسي از يک ناحيه ذخيره شود، که هنگام باز سازي تصوير نقشي اساسي تر را ايفا مي کنند.
در اينجاست که روش فراکتالي اهميت خود را نشان مي داد. در يکي از روشهايي که در اين باره مطرح شد و با استقبال بسيار خوبي از سوي طراحان مواجه شد، روش استفاده از خاصيت الگوهاي فراکتالي بود. در اين روش از اين ويژگي اصلي فراکتالها استفاده مي شد که جزيي از يک تصوير در کل آن تکرار مي شود.براي درک بهتر به يک مثال نگاهي بيندازيم. فرض کنيد تصويري از يک برگ سرخس تهيه کرده ايد و قصد ذخيره کردن آن را داريد.
همان طور که قبلا هم اشاره شد، اين برگ ساختاري کاملا فراکتالي دارد؛ يعني اجزاي کوچک تشکيل دهنده در ساختار بزرگ تکرار مي شود.
بخشي از يک برگ کوچک ،برگ را مي سازد و کنار هم قرار گرفتن برگها ساقه اصلي را تشکيل مي دهد. اگر بخواهيم تصوير اين برگ را به روش عادي ذخيره کنيم ، بايد مشخصات ميليون ها نقطه اين برگ را دانه به دانه ثبت کنيم ، اما راه ديگري هم وجود دارد. بياييد و مشخصات تنها يکي از دانه هاي اصلي را ضبط کنيد. در اين هنگام با اضافه کردن چند عملگر رياضي ساده بقيه برگ را مي توانيد توليد کنيد.
در واقع ، با در اختيار داشتن اين بلوک ساختماني و اعمال عملگرهايي چون دوران حول محورهاي مختلف ، بزرگ کردن يا کوچک کردن و انتقال مي توان حجم تصوير ذخيره شده را به طور قابل توجهي کاهش داد.
در اين روش نرم افزار نمايشگر شما هنگامي که مي خواهد تصوير را بازسازي کند، بايد ابتدا بلوک کوچک را شبيه سازي کرده ، سپس عملگرهاي رياضي را روي آن اعمال کند، تا نتيجه نهايي حاصل شود.
به نظر مي رسد اين روش مي تواند حجم نهايي را به شکل قابل ملاحظه اي کاهش دهد، اما تنها يک مشکل کوچک وجود دارد و آن هم اين نکته است که همه اشياي اطراف ما برگ سرخس نيستند و بنابراين الگوهاي تکرار در آنها هميشه اينقدر آشکار نيست.
بنابراين بايد روشي بتواند الگوهاي فراکتالي حاضر در يک تصوير را شناسايي کنند و در صورت امکان آن را اعمال کند.
به همين دليل ، معمولا روش فراکتالي با روشهاي فشرده سازي ديگر همزمان به کار برده مي شود؛ يعني اگر الگوهاي تکرار چندان پررنگ نبودند، بازهم فشرده سازي امکانپذير باشدالبته زياد نگران ناکارامدي اين روش نباشيد. يادتان نرود، شما در جهاني زندگي مي کنيد که براساس يافته جديد ساختاري آشوبناک دارد.
مطمئن باشيد هندسه فراکتال بر بسياري از اشکال عالم حاکم است ؛ حتي اگر در نگاه اول چندان آشکا ر نباشد.

منبع
 

جدیدترین ارسال ها

بالا